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STEADY-STATE PLANAR ABLATIVE FLOW

I. INTRODUCTION

There have recently been a series of experiments on laser driven ablative acceleration of thin foil
targets at the Naval Research Laboratory'™® and elsewhere.”-® These experiments demonstrated
acceleration of the foil up to speeds in excess of 10’ cm/sec. The authors also compared the experi-
mental resuits with a simple rocket model. The laser irradiances in these experiments are sufficiently

low that plasma is most likely described by classical transport.

This paper discusses the theory of ablative acceleration. Since this problem can be solved in
either one’ or two® dimensions by fluid simulation, our principal object is not to find detailed solutions
which can be compared precisely with experiment. Rather it is to shed light on the physics of abiative
acceleration and to derive simple scaling laws. We do derive simple scaling laws for ablation pressure,
blow-off velocity and separation between critical and ablation surfaces. These scaling laws depend only
on the material, laser wavelength and absorbed laser irradiance. The key to deriving these simple scal-
ing laws is not really in solving the steady state fluid equations, but rather in selecting which of many

possible solutions describe the ablative acceleration.

Another crucial question for ablatively driven laser fusion is what degree of non-uniformity of

illumination can be tolerated. Initial experiments in this area have also been done at the Naval

Research Laboratory.” '" This paper also addresses the issue of non-uniform illumination.

The earliest theories of uniform laser driven acceleration assumed that the critical surface behaved
like a Chapman-Jouguet deflagration point.''-'* The dense, heated plasma then acts as a piston and

drives a shock into the cold undisturbed fluid. The laser energy is ultimately coupled to the target by
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this shock wave. Except for Ref. 12, these theories neglect thermai conduction. They show that the
ablation pressure P, scales as /¥*A~¥*, and the blow-off velocity scales as /''A¥? where [ is the
absorbed irradiance and A is the laser wavelength. They assume, as we do, that the laser light is
absorbed only at the critical density. These scaling laws are similar to the ones we derive. This is

interesting since thermal conduction is neglected. In ablative flow, thermal conduction is the principal

inward energy transport mechanism.

More recent theories include the effects of thermal conduction.'™? These theories were done in
either planar or spherical geometry. Since the thermal conduction is in fact very large in the blow-off
plasma, we also include thermal conduction. In these newer theories, the scaling laws are either not
explicitly given, or else they tend to be very comptlicated. For instance the scaling law for ablation pres-
sure given in Ref. (19) is

P, = P LAY R:‘ TH RN
where M, is the Mach number at which the thermal flux is inhibited, /, is the absorbed laser irradiance
at the ablation surface and R, is the ablation surface radius. Reference 18 finds on the other hand. that
steady state solutions can only be found if their parameter M (proportional to critical-ablation surface
separation in our theory) is between about 2/3 and 16/5. Also they find that steady state solutions

exist at given critical to sonic density ratio. only for a particular value of absorbed irradiance, in other

words the absorbed irradiance cannot be independently specified.

Our solutions are more like those calculated for planar geometry.'®!” However the solutions
presented here more clearly connect the flow to the laser parameters and show explicitly how the slab
accelerates. In fact we find the acceleration is simply P,/ M where M is the mass of the slab which has
not yet ablated away. Also the flow calculated in Refs. 16 and 17 require several more parameters to be
specified. For instance solutions presented in Ref. 16 specify the temperature at the critical surface and
acceleration whereas we solve for these. We need only specify the material, laser wavelength an
absorbed irradiance. The calculations in Refs. 16 and 17 are also more difficult to apply to an experi-
ment because fluid quantities are normulized to the values they have at the maximum density which is

not known a priori.
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We find that the fluid can most easily be described by breaking it into three regions. First there is
the subcritical plasma which expands ir'to a vacuum. Since it expands into a vacuum, it cannot be in a
steady state: rather the expansion will be some sort of rarefaction wave. Since the thermal conduction

is very high, an isothermal rarefaction is most reasonabie.

Second there is the ablation front between the critical surface and the accelerated slab. We
assume that the flow is in steady state there. The steady state ablation front can match smooth.y to the
nonsteady rarefaction if the isothermal Mach number is unity at the critical surface. This feature also
corresponds to what is found in particle simulations’' and theory™” of laser light interaction with the
critical surface. The analytic solution for fluid quantities in the ablation front tends to zero temperature
a finite distance away from the critical surface. This point then marks the transition from the ablation

front to accelerated slab. These two regions are described in Sec. Il.

Third there is the accelerated slab itself. In Section 1lI we review Kidder's theory™ for an
accelerated degenerate Ferm_i-Dirac gas. The structure near the transition point is almost impossible to
calculate znalytically since the material makes a transition there from degenerate Fermi gas to fully ion-
ized plasma. In this work, we treat the transition as a contact discontinuity across which mass, momen-
tum and energy flux arz conserved, but do not concern ourselves with its detailed structure. Also we
determine under what conditions the acceleration is negligible in the calculation of the properties of the

ablation front.

In >ection 1V we examine the problem of non-uniform illumination. First, it is assumed that the
one-dimensional flow pattern is stable so two-dimensional steady-state treatment is meaningful. If we
assume all quantities have a small transverse perturbation, the steady state {luid equations can be linear-
ized in the perturbed quantities. These linearized equations turn out to be a set of equations for an
isotherma! sound wave coupled to an equation for a thermal conduction wave. Approximate solutions
to these equations are found which directly relate the non-uniformity of the absorbed irradiance to the

non-uniformity of the ablation pressure at the slab. Since the acceleration of the slab is P, times the

puise time, we can simply derive velocity non-uniformity in terms of illumination noq-uniformity.
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In Section V we derive simple scaling laws for a laser produced plasmas and compare the theory
with NRL experiments for both uniform and non-uniform illumination. Also we show that the one-
dimensional solutions calculated are very close to what is found by one-dimensional numerical solution.

As we will see, the theory compares reasonally well with experiment.
II. STEADY STATE ABLATION IN ONE DIMENSION

In this section, we examine the steady state flow which results when an intense jaser beam
illuminates a slab. The configuration is as shown in Fig. 1 with the laser on the right and the flow in
the positive x direction. There are thres distinct regions in the flow. Farthest to the right is the sub-
critical density plasma. Since this plasma expands into a vacuum, it cannot be steady state; rather it will
be characterized by some sort of rarefaction wave. Farthest to the left is the accelerating slab which we
will discuss in the next section. In between is the region of steady state ablative flow. As we will see.
and as has been pointed out by others,'® ¥ the solution of the steady state fluid equations are quite
straightforward. The main problem is to0 connect these solutions properly from one region o the next,
so that one eliminates as many constants of integration as possible. We find the steady state ablative

flows is characterized completely by the material, laser wavelength and absorbed laser irradiance.

In the reference frame in which the ablation front is at rest, the steady state conservation equa-

tions for mass and momentum are then

or
pv=p Vv, (1b)
and
4 (v +pT)=0 (2a)
dx
or
pv-+pT=pvi+p T (2b)

where p, v and T are the mass density, velocity and temperature. For convenience, the temperature has
units of velocity squared. so that T is the isothermal sound speed. A subscript ¢ denotes the value of

4




' o e R m

NRL MEMORANDUM REPORT 4644

a quantity at the critical density. Also we have neglected the ponderomotive force and the inertial force
due to the accelerated reference frame. The former approximation is valid if the laser light energy den-
isty is small compared to the thermal energy density at the critical surface. We will discuss the validity
of the latter approximation in the next section. The critical density p_ is determined by the material
and laser frequency, (assuming the ion is fully stripped) but v, and 7, are as yet undetermined.

Equations (1 and 2 a) or (1 and 2 b) can be easily solved to give the following:

v __ 1 4T (3a)
dx v(l = T/v) dx
‘ or
; 4+ TV T ‘ »ri-
d - v, + T/v)/T" ¢ ((2v‘ +T/v) T -4 (3b)

where . is the isothermal Mach number «¢ = v//T. Equation (3 a) shows that the flow becomes
singular at the sonic point . = 1. Thus the sonic transition cannot be in the region of steady state

ablation.

If we assume that the thermal conduction is high, the expansion of the underdense plasma should
be approximately described as an isothermal, rather than adiabatic, rarefaction wave. This (time depen-
dent) solution is given by

p=p. exp(=x/T"1) (4a)

ve T+ x/t (4b)

where x = ( corresponds to the critical density at all times. Clearly, this isothermal rarefaction wave

can connect smoothly to the steady state ablative flow only if

v.=T". (5)

s

Thus as additional boundary condition for the ablative flow region, we assume the Mach number is

equal to unity at the critical surface.

This choice is also compatible with other studies. First, it is known that the singularity at .4 = |
in the steady state fluid equations can be removed if the deposition of laser momentum at the critical

surface is accounted for.'"'" Lee et al*’ find that there is a density jump at the critical surface and the

flow velocity makes a transition from subsonic on the high density side to supersonic on the low density

5




MANHEIMER, COLOMBANT, AND GARDNER

side. The density and velocity jump both approach zero as the electron oscillating velocity divided by
electron thermal speed approaches zero. Actually there will be a small density jump at the critical sur-
face but we do not consider it here. In the NRL ablation experiments, the laser irradiance is small
enough that the ponderomotive force is unimportant. Secondly, as will be shown one dimensional fluid
simulations in slab geometry do confirm that the isothermal Mach number is nearly always equal to
about one at the critical surface. Thus Eq. (5) determines the velocity at the critical surface in terms of

the temperature. The temperature will be determined from the energy equation.

Before turning to the energy equation, let us look at the expression for Mach number, Eq. (3 b).
In the ablative flow region, the flow is subsonic. Also we expect that near the solid, the temperature
will be small. Taking the subsonic solution of Eq. 3b for . in the limit of small 7, we find

o= Tl/l/z 7:l/2 6)
where we have used Eq. (5). Thus as the temperature decreases. so does the Mach number.

We now turn to the steady state energy equation which we write as

d |5 2 dT
-_— = —_ Lo ] (73)
3 pvT — KT 15 (x)
where [ is the absorbed laser energy flux. Integrating in x for x < 0,
S 50 dT
5 pvI — KT — = § (7v)

where S is the 10tal constant energy flux. We have assumed the thermal conduction is proportional to
T" " as is appropriate for an ionized plasma. In Eq. (7) we have neglected the kinetic energy flux
1/2 pv' compared to the enthalpy flux 5/2 pvT. At the critical density. this is a 20% error. However as
one approaches the solid, and .#° = v°/ T decreases, this approximation gets better and better. Neglect-

ing this term allows us to write a very simple analytic solution to the energy equation.

The next question is what the constant S is in Eq. (7 b}. The individual terms on the left hand
side of Eq. (7b) have roughly magnitude /. the laser irradiance. There are three possible physical
effects which contribute to S. First it describes the heating (or preheat) of the slab. This contribution
to S from the preheat is negative since in the configuration of Fig. | power travels from right to left to

reach the slab.
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Since accelerating targets with no preheat are of most interest to laser fusion, we do not consider
preheat. Second there is the negative contribution to S from power deposited at the ablation surface
needed to vaporize and ionize the slab. Since this energy is very small compared to flow and thermal
energy, we neglect it also. Finally there is the power needed to accelerate the slab. This contribution
1o S is positive since in the reference frame of the ablation front the slab has positive velocity but nega-
tive acceleration. That is the siab loses energy. However the slab velocity is very small, being the criti-
cal velocity times the critical density divided by the solid density. Therefore we will also neglect the

power coming out of the accelerated slab, so that § = 0 Eq. (7 b) becomes

iva-— KT

/zﬂﬂ 7
3 i 0. (Tc)

Since pv is constant, Eq. (7 ¢) has a simple analytic solution

s
g, 25 P Ve
- Mg &2 L L (
T=\T T K r] 8)
where x = 0 is assumed to be the criticai. surface. Notice that the equation is valid only for
4 KT o . :
x> - g . at which point it is singular in that T — 0, but p — oo. (The solution for T versus

¢ 3

x is plouted in Fig. 2). The problem now is to determine 7, and to determine the meaning of the

¢

singular behavior as T — 0.

To find T, we must examine the behavior of the flow near the critical density. Since we neglect
ponderomotive force (i.e.., laser momentum deposition), the density and velocity are continuous across
the critical density. Since the thermal conduction is large, the temperature is also continuous across the
critical density. The only discontinuous quantity then is the temperature gradient, and the discontinuity

in it reflects the laser energy deposition at the critical density. Specifically

32 _d_T _ﬂ -
KT, (de de-l 1 9)

where / is the absorbed laser irradiance. The question now is how much of this absorbed irradiance is

conducted inward and how much is conducted outward.

~4
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The outward flux can be determined from the rarefaction wave solution, Eq. (4). The total flow

energy flux, pv' + 5/2pvT through the critical surface is 3p, ¥, 7, where we have assumed .# = I.

However by integrating ~pv- + 3/2pT. from x = 0 to = and taking the time derivative, we find that
the energy flux through x = 0 needed to drive the rarefaction is 4p, ¥, T.. Thus an additional energy

flux p, ¥, T, must be supplied by outward thermal conduction so that

52 dT

KT, P

=p V. T. (10)

v=("

Thus the temperature in the underdense plasma is not exactly constant. Our model for the rare-
faction wave is valid in the limit K — oo so that the relative temperature drop across this rarefaction

wave is small. The inward flux can be obtained immediately from Eq. (9) and gives

d 5/217_: -_5_
. KT dx[‘_n o T (1

Thus making use of .# = 1 the conditions at the critical surface are simply given by

K T‘i 2 d_Tl 5
X=i}

s §
- pTVie = | (12)
dx 2 Pt 7

The steady state ablative flow pattern is now determined by only three quantities, the material, the laser

frequency and the absorbed irradiance.

To complete our specification of the flow, it is necessary only to describe the transition from solid
to ablative flow. The mass flux is clearly conserved across this transition. The energy flux, which is
zero is also conserved across this transition in the approximation that the convective part of the energy
flux is zero. The problem is that the momentum flux pv° + p T is discontinuous across this transition.
The pressure then goes to accelerating the slab. The properties of the accelerated slab are discussed in

the next section.

We now discuss briefly the transformation properties from the ablative flow to laboratory refer-
ence frame. One can show that the time dependent fluid equations are invariant to the Galilean

transformation
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v=—v+V

x—x+V

r— (13)
T—T

Q—0Q
- St 4
where Q is the thermal energy flux and pg is an inertial force density. Thus from the steady state solu-

tion in the ablation front reference frame, we can easily generate solutions in the laboratory frame, or

any reference frame.

We digress briefly to consider the question of inhibited thermal conduction. First of all, we note
that just inside the critical surface, the thermal energy flux is given by 5/2p v T and the energy flux

decreases as one approaches the solid. Thus just by the nature of the steady state ablative flow with no

preheat the electron thermal energy flux is limited to about 5/2 .\/-—_ times its free streaming value,

i

where m and M are respectively the electron and ion masses. This value is in the range of flux limits
which have often been quoted.”* We emphasize that this flux limit has nothing to do with any micros-
copic physical process (for instance magnetic field or instability) which limits the electron thermal

energy flux. Rather it has to do with the macroscopic properties of the fluid flow which is set up.

Now let us examine how different theories of flux limitation can affect these results. One theory
is to say that the flux is either the classical value or «p 772, whichever is less.'* ' 2* However if this is
5o, the only solutions to Egs. (7) in the flux limited regime are p,v and T all equal to constants and the
solution becomes indeterminate. In fact other authors have made this assumption and have found that
parame 2rs in the flux limited ablative flow region vary in space only because of the spherical diver-

gence'’ - or the acceleration of the siab.'®

Another theory is to say that K in Eq. (7) is anomalously reduced. These theories at least relate
Q to temperature gradient, which is certainly reasonable. Also theories relating Q 10 a particular insta-

bilitv generally have this feature.” " If K is reduced by some factor f (but is still constant) then the
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equations for fluid quantities can be solved exactly as before. The only difference is that the distance

between the critical surface and solid is reduced by this same factor /. Thus if K is reduced, the steady
state length scales are reduced by the same amount so that the thermal energy flux is unchanged. This

effect has been seen in fluid simulations.”

To summarize, we have shown that the flow has three distinct regions, the undisturbed solid, the

‘}i

steady state ablative flow between solid and critical density, and the subcritical rarefaction wave. All !

}

aspects of the steady state flow (for instance temperatures, velocities, rate at which the solid is being

eaten away) are determined by three parameters, the material, the laser wavelength, and the absorbed l
laser irradiance. If there is thermal flux limitation, it most likely manifests itself as a reduced separa-

tion between critical and solid density. i
I1l. THE ACCELERATED SLAB |

In this section we discuss the accelerated sheil. First we review Kidder's™ solution for the shell.
and then we derive conditions for neglecting the effect of acceleration on the ablative flow. If all

preheat is neglected the solid is assumed to be a degenerate Fermi gas so

|

where p, is the ambient density and P, is the ambient internal pressure of about 1 Mb (about 10*

33
_E.I ]pn (14)
pl‘

dynes/cc). Since the gas is degenerate there is no thermal conduction. Assuming the kinetic part of

the momentum flux is much less than P, the pressure gradient is just balanced by the inertial force so

dP

where g is the acceleration of the slab. Integrating Eq. (15) across the slab we find
P4—-gfpdx-—gM, (16)
P, is the ablation pressure at the surface of the slab given by Eq. (2b) and M is the total mass of the
slab. We re-emphasize that P, is determined entirely by the material. laser wavelength and absorbed
irradiance. Equation (16) then gives the acceleration in terms of the mass of the slab. If x = x, is the

'L position of zero density at the front of slab
10
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where in our configuration g < 0 and x, — x < 0. The upper density boundary of the slab is just
determined by the total mass of the slab. To the right of this upper boundary is the region of ablative
flow. For our purposes here we regard this transition as a contact discontinuity across which mass,
momentum and energy flux are conserved. The actual nature of this transition is extremely
complicated because material goes from a Fermi degenerate gas to a fully ionized plasma. Thus, Egs.

(7) are not able to treat this transition region in either steady or non steady flow.

The next question is what effect the acceleration has on the ablative flow region. To account for

the acceleration, one adds a term — pg and — pvg to the right hand sides of Eqgs. (2 a) and (7 a). Thus,
crudely speaking, acceleration is negligible if g << %&T’ According to Eq. (8), T goes from the critical

temperature to zero in a distance 4KT.V2/25p v, so the effect of acceleration on the ablative flow is

negligible if
4gKT‘J/2
25p,v.
where T is given by Eq. (12) and v, is related to T, by the Mach one condition.

3

<< 1, (18)

IV. THE EFFECT ON NON-UNIFORM ILLUMINATION

A crucial question for laser fusion driven by ablative acceleration is what degree of non unifor-
mity of iliumination can be tolerated. The siab is ultimately accelerated by the total pressure at the
ablation surface p ,vi +p, T, = p,T,, so we are interested in determining the non-uniformity of pres-
sure at the ablation surface in terms of nonuniformity of laser irradiance. In order to do so within the
context of the steady state fluid equations, it is necessary to assume that the flow pattern is stable. If a
perturbation is set up at the critical surface, the steady state fluid equations show that this perturbation
will either grow or decay as one moves away from the critical surface. If the flow pattern is stable.
these growing perturbations represent fluctuations initialized elsewhere and decaying toward the critical
surface. Thus for perturbations initialized at the critical surface, the proper boundary conditions for the

assumed stable flow pattern is 1o consider only perturbations which decay away from the critical surface.

11
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We will scale the equations so the dependent and independent variables are § = p/p,. v = v/lv |,
r=T/T, and x = x/x, where xo = KT?/p,. In ierms of the scaled variables, the solution for tempera-
ture, Eq. (8) becomes

MNA
1+ 2

n (19)

T =

so that the separation between yx. and x, is 0.16. It is now assumed that all quantities are the x depen-
dent solutions described in Section Il plus a small transverse perturbation proportional 10 exp iky. The

steady state fluid equations are then linearized in the smail perturbations to give

d

= S+kOvi, =0 (20
dx
a4 + kv, =0 (21)
dx
oo, L5 KT (QJy S mkp -7 (22)
dx v:i—1 vi—r
dv 100v, g7 e S dr s
S Akl LSS A (
i ST dy k5 Y dx J 23)

where in wriling Eqs. (20)-123), we have changed notation slightly by redefining i», — v, so that each
equation is real. A tilde superscript indicates a perturbed quantity. Also we have used as dependent
variables S and J instead of # and 5. The quantity J is the perturbed mass flux in the x direction
J=0v, +00, (24)
and S is the perturbed xx component of the total momentum flux tensor (the perturbed ablation pres-

sure)
S=0Wwl+1)+ 2000, +067. (25)

Eguation (20) is the x component of the momentum equation, Eq. (21) is the mass equation. Eq. (22)
is the v component of the momentum equation, and Eq. (23) is the temperature equation. [n writing
the latter, we have made use of Eq. (20) to eliminate several terms. It is precisely S, which we want to

relate to the nonuniformity in laser irradiance.

It is clear that Eqs. (20-23) are singular at the isothermal sonic point »; = r. Also the first three
equations are coupied to the last one through the right hand sides of Egs. (22) and (23). This coupling

and singuiar behavior make the decaying solutions difficuit to find.

12
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To get a useful result on the behavior under non-uniform illumination, as well as to gain insight
into the physical processes taking place, we neglect this coupling; that is we set the right hand sides of

Egs. {22) and (23) equal to zero. We will come back and discuss this shortly.

Thus the equations describing the steady state fluctuating quantities are Egs. (20) and (21) and

oy, L5 - KT}y -5 =0 (26)
ax T w-r

&i 108y, g7 ..
i T d k*F=0. Q7N

Equation (27) above is the thermal conduction equation, the middle term being the effect of the
fluid flow. Assuming that ¥ — exp f Kdx, the zeroth order WKB solution for the local dispersion rela-

tion is

KT - (28)

q

cnl 2 1/2
50v, + [23 O.ux +k2]
7

£

so the two values of K are real and have opposite sign. This is the thermal wave, but coupled to the

Sov, . .
— 7 the flow has a very strong effect on the thermal wave. Equations

B

ambient fluid flow. For k <

(20), (21) and (26) are simply the equations for isothermal sound waves in a flowing system. The local

dispersion relation is
Kiew KT (29)

2
T =V

Equation (29) is just the dispersion relation for isothermal sound wave (w ~ k»,)° — kir = 0 where
w = 0 and k, is pure imaginary. Since + > »? in the underdense plasma, K.’ also has two real roots,
one positive and one negative. The sound wave damps at zero frequency because it is cut off, like an

electromagnetic perturbation in a waveguide below the cut off frequency. Although Eq. (29) appears to

be singular at = — »? = 0, the integrated amplification, exp J; " K, dx is well behaved and bounded.

If a pure thermal wave is set up in the plasma, S. Jand @, are all zero. However since S depends
on the 7 initially set up fluctuations in @ and 5, are generated. In other words, a pure thermal wave
cannot generate a pressure gradient or mass flow. On the other hand, if a pure isothermal cut-off

sound wave is generated, T = (.
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The solutions to the uncoupled equations which decay away from the critical surface are then easy
to find. These should be reasonably good approximations to the solution to the coupled set as long as
Kr # K, at each point in the flow pattern. An examination of Egs. (28) and (29) shows that for ali k.
K; = K, at some point in the flow. However if k is smail, the point where K; = K is very close 10
the critical surface. For instance, if kx; < 16, the density at this point is betweenp . and 1.1 p.. If we

1.2

assume that the flow pattern has a slight jump at the critical density, then the uncoupled equations

should be a good approximation to the perturbed flow pattern for sufficiently smail k.

The problem now is to solve Eqgs. (20), (21), (26) and (27) for a region of steady ablative flow
illuminated by a non-uniform laser beam and find the solutions which decay away from the critical sur-
face. If the absorbed laser irradiance is / + /. then according to Eq. (12).,

7

(30)

~|~

-2
3

-

(2]

This temperature perturbation decays away from the critical surface according to the solution of Eq.
(27). In the WKB approximation it decays away with Ky given by Eq. (28) with the positive sign

chosen, since the critical surface is at x = 0 and the overdense plasma is at negative x.

The next question is what pressure non-uniformity, S. at the critical surface is generated by the
laser irradiance non-uniformity. Since this pressure nonuniformity decays away from the critical surface
with local decay rate given by Eq. (29), one can easily calculate that for the decaying cut off sound
wave near the critical surface §, = — 5 /7, so that §, = 9 7 + (1 — v}/7.) V. Since the flow at the
critical surface is assumed to be sonic. we have the resuit
2 1

?9‘. T

The fluctuating pressure then decays away from the critical surface according to the solution of Egs.

S,

-0 F = 1)
(20). (21) and (26). A plot of 54/5}. versus kx,, from the numerical solutions of these equations is
shown as the solid curve in Fig. 3. Also shown in Fig. 3 as the dashed curve is the simple result
$,/S = exp(~ .16 kx,) given by Brueckner.”® This is the solution to the thermal conduction equation
with no flow, V7 = 0 and assuming pressure fluctuations follow temperature fluctuations. Our calcu-

lations show somewhat more smoothing of pressure fluctuations in the ablation front. Clearly there is a

14
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great deal of smoothing of the pressure fluctuation for kx, > 8. Also, as is apparent from Eqs. (28)
and (29), for small k., the thermal wave damps out very quickly in the overdense plasma where
r << 1, whereas the damping rate of the cut off sound wave is not strongly affected by low
temperature. Thus near the ablation surface, the thermal wave should have much smaller arnpii:.ude
than the cut-off sound wave; that is there should be small temperature perturbation.

V. APPLICATION TO A LASER PRODUCED PLASMA AND COMPARISONS
WITH ONE-DIMENSIONAL FLUID SIMULATION

In this section, we apply the theory developed in the previous three sections to laser produced

! plasmas and compare with experiment and fluid simulation. If 7, represents the electron temperature,

and equipartition is assumed then the total thermal pressure is (1 + Z)p T, (ergs) /M, where M, is the
ion mass and Z is the charge state. The ion mass is the atomic number A4 times the proton mass. Then

the quantity Tin Eq. (2), the isothermal sound speed squared is

(1+2)
T M T. (ergs). (32)

From the expression for electron thermal conduction in an unmagnetized plasma,”® we find that the

quantity K in Eq. () is

o 31 x 1078 4 o
(1+2)17Z, A

where

¥ Z:n,
Z, - = (34)

Y Z,n,

a

the effective Z for collisional processes, and .\ is the Coulomb logarithm. There are several predictions
of the one dimensional theory which give rise to simple scaling laws and/or which can be compared
with experiment. These are the ablation pressure, blow-off velocity, distance from critical to ablation
surface, and condition for neglect of acceleration in the ablation front. The ablation pressure is 2p, T,

assuming Mach one flow at the critical surface. For a CH target used in the NRL experiments,

Z=35 A=~65 Z,=5 p =3x10" and we assume A = 5. In this case, using Eq. (12) 0

related temperature to absorbed irradiance, we find

15
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43

Py=2 T =26 x10" [—lég A~¥3 dynes/cm?

pIR]

-26 % [-—’-— AT Mb (35)

107

where [ is the absorbed laser irradiance in W/cm’ and A is the wavelength in microns. Notice that
there is an advantage in going to shorter wavelengths. Assuming that the absorbed irradiance is 80% of
the incident irradiance, the scaling law given by Eq. (35) is piotied in Fig. 4, along with points taken
from the NRL experiment.’ Clearly the agreement is very good, particularly as Eq. (35) is an absolute

scaling law with no phenomenological constants.

The next quantity of interest is the expansion velocity. The quantity most accessible to theory is

the velocity at the criticai density which for the plastic target is

(3

v, =2x 10 [—1-01—”-]“ AYY cm/sec. (36)
The quantity most accessible to experimental measurement is the velocity far from the critical surface.
The magnitude of this velocity is greater than v, but just how much greater depends on how far away.
the measurement is, and just when the approximation of a one dimensional isothermal rarefaction wave
breaks down (this might be determined for instance by the spot size). In Fig. 5 is shown the scaling
law given by Eq. (36) as well as measurements from the NRL experiment.* The actual velocity is

about 2.5 times greater than given by Eq. (36), but the scaling agrees very weil.

We now consider the distance between the ablation surface and critical surface. According to Eq.

(19), this is .16 times the distance x, where

KT? e
Xp = ——— - 350[-161;;] A'Y3 microns. 37)

{

At long wavelength. the scale lengths expand very rapidly. For example, a CO, laser produced plasma
at 10" W/cm’ has a critical to ablation spacing of several meters. Clearly, these long scale length
plasma can never form in a laser fusion experiment. Thus, if the thermal transport is classical, the

behavior of a CO, laser produced plasma is dominated by its transient response and will not reach

16
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steady state. However if the transport is inhibited, then the length scales can be reduced. Thus while
short wavelength has the advantage of increasing ablation pressure at given irradiance, long wavelength
has the advantage of increasing the critical to ablation surface separation so that nonuniformities in

laser irradiance can be smoothed out before they reach the ablation surface.

The next question is the condition for the neglect of the acceleration on the blow-off plasma.
Equation (18) reduces to

23

o0 A << L. (38)

For accelerations of order 3 x 10'° cm/sec? as measured in Ref. 1 and 2, the effect on the blow-off

10—17 g [____

plasma is negligible up to irradiance of order 10'® W/cm? and higher.

We now discuss experiments with non-uniform laser illumination.” '® [n Ref. 10 a portion of the
laser light was masked out causing an intensity minimum at the center of the laser spot. The ratio
intensity at the dip to maximum intensity was [ : 2, [ : 6 and 1 : 10 and the wavelength (peak to peak
separations) took on values of 280 u or 440 . The velocity non-uniformity of the accelerated target is
then measured as a function of irradiance. We compare here the results of that experiment to the
linear theory developed in Section IV. Since that theory is linear in non-uniformity, we compare only
with the experiment having the 2 : | irradiance ratio. This experiment had a 280 u transverse

wavelength.

The velocity fluctuation should be proportional to the fluctuation in pressure at the ablation sur-

face times the puise time. Therefore

YMAX — YMIN - 28,
v S,

The quantity §, is related to S, by the graph in Fig. 6. Then, as in Sec IV, §, = % p. T. (I/D). Mak-

(39)

ing use of the fact that x, is given by Eq. (37), we find that vy 4x/vyin — 1 versus irradiance is given
by Fig. 6. Also shown on Fig. 6 are experimental points taken from Ref. 10. Clearly there is very rea-

sonable agreement.

17
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As a check on some of the one-dimensional theory derived here. we have also performed a
number of one-dimensional fluid simulations in planar geometry. The code. described elsewhere is
modified only by eliminating inverse bremsstrahlung absorption and by depositing all absorbed laser
energy at the critical surface. This is in agreement with the theoretical model described in Section II.
To test the scaling of parameters on wavelength and irradiance for a plastic target, we have performed
five simulations with parameters given in Table 1. The parameters are as given for the CH target
except that Z., was taken as 3.5 instead of S. According to Eq. (37}, this would make x, of the simula-
tion larger by a factor 10/7. First, we point out that all simulations in the table did come (o a steady
state in that the separation between critical surface and ablation surface did approach a constant vaiue,
with both surfaces moving into the accelerated slab. The third column of the table shows the isother-
mal Mach number at the critical density in the reference frame of the ablation front. Clearly this Mach
number is very near unity. The worst agreement was in the second row where the Mach number was
very difficult to measure due to large acceleration of the slab. Approximate power law formulae for the
ablation pressure and critical to ablation surface separation are

Py~ 1o\

Xn =~ 1'=ae,

These formulae have scaling very nearly as given in Egs. (35) and (37). However as is apparent from
other one dimensional simulations,” the complicating effects of inverse bremsstrahlung absorption and
spherical geometry can cause significant changes in these scaling laws. In all simulations however, the

separation between critical and ablation surface is a very rapidly increasing function of laser wavelength.

Table 1
Auw) | T(W/em?) | 4 | P, (Mbar) | 0.16 x, (u)
0.53 107 0.97 43 43
0.53 10" 0.8 16.0 60
1.06 10'- 0.94 0.6 4.7
| 1.06 10" 0.88 2.5 80
2.7 10" 1. 0.3 236

*lsotnermal Mach number au critcal surface was very difticull 1o measure
due to the large acceleration of the slab

18
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